Maryland Energy Administration

MISSION

To promote affordable, secure, and safe energy while maintaining energy independence, sustainability, and reliability through innovative and effective policies, programs, technologies, and financing mechanisms.

VISION

For all Maryland entities to have access to and benefit from affordable, clean, reliable, and resilient energy.

KEY GOALS, OBJECTIVES, AND PERFORMANCE MEASURES

Goal 1. Increase Maryland's energy efficiency and energy conservation.

Obj. 1.1 Reduce per capita peak electricity demand and electricity consumption 15 percent, as established by EmPOWER Maryland.

Performance Measures	2011 Act.	2012 Act.	2013 Act.	2014 Act.	2015 Est.	2016 Est.	2017 Est.
Cumulative change in per capita peak demand compared to the 2007 baseline (0.0026 kW)	-0.2317	-0.2755	-0.3742	-0.4887	-0.5418	-0.5721	-0.5993
Cumulative percent change in per capita peak demand compared to the 2007 baseline (0.0026 kW)	-9.06%	-10.78%	-14.64%	-19.11%	-21.19%	-22.37%	-23.44%
Cumulative change in per capita electricity consumption compared to the 2007 baseline (12.3773 MWH)	0.68	1.17	1.25	1.46	1.61	1.75	1.94
Cumulative percent change in per capita electricity consumption compared to the 2007 baseline (12.3773 MWH)	-5.51%	-9.43%	-10.08%	-11.82%	-12.98%	-14.15%	-15.65%
Cumulative avoided electricity costs (\$ millions)	437	754	815	962	1,067	1,170	1,302

Goal 2. State agencies will reduce energy consumption.

Obj. 2.1 Fund projects through the State Agency Loan Program (SALP) that will provide at least \$184,000 of annual savings in energy-related expenditures.

Performance Measures	2011 Act.	2012 Act.	2013 Act.	2014 Act.	2015 Act.	2016 Est.	2017 Est.
Annual savings from SALP projects (\$)	1,041,987	378,431	178,500	167,913	169,509	184,000	184,000
Annual energy savings (million British Thermal Units-MMBTU's)	32,039	12,920	6,094	8,434	10,594	6,659	6,659

Goal 3. Local governments, non-profits and businesses will improve their energy efficiency.

Obj. 3.1 Provide loans through the Jane E. Lawton Conservation Loan Program that will result in \$175,000 in energy cost savings annually.

Performance Measures	2011 Act.	2012 Act.	2013 Act.	2014 Act.	2015 Act.	2016 Est.	2017 Est.
Annual energy savings from Jane Lawton projects (\$)	620,339	119,859	252,517	49,738	297,558	175,000	175,000
Annual energy savings (MMBTU's)	51,077	3,167	15,024	1,793	6,193	10,089	10,089

Maryland Energy Administration

Goal 4. Increase electricity generation fuel diversity through the increased use of in-state renewable energy.

Obj. 4.1 Increase the generation of clean, renewable energy by six million megawatt hours (MWh) by 2020 through grants, tax credits, education, and outreach.

Performance Measures	2011 Act.	2012 Act.	2013 Act.	2014 Act.	2015 Est.	2016 Est.	2017 Est.
Megawatt hours (MWh) of commercial-scale renewable energy generated in-state Megawatt hours (MWh) of residential and small commercial	3,917,031	3,001,861	3,079,372	3,065,521	3,408,781	3,435,909	3,744,540
renewable energy generated in-state	12,521	28,283	47,582	72,563	162,563	267,563	387,563

Goal 5. Diversify Maryland's transportation network by encouraging the utilization of electric vehicles.

Obj. 5.1 Achieve 60,000 electric vehicle registrations by 2020 through incentives, marketing, and education.

Performance Measures	2011 Act.	2012 Act.	2013 Act.	2014 Act.	2015 Act.	2016 Est.	2017 Est.
Total number of Electric Vehicles (EV) registered in state	75	439	1,567	2,296	3,069	3,869	4,669
Total number of Hybrids registered in state	73,923	76,851	99,953	77,454	79,513	83,489	87,663
Public electric vehicle charging stations	94	95	362	593	631	681	731
Gallons of petroleum displacement (millions) attributable to EVs	0.02	0.14	0.51	0.75	1.00	1.27	1.53

NOTES

¹ This data from the Maryland Department of Transportation was obtained from a newly implemented Business Intelligence reporting system, utilizing a VIN decode software procedure. This system replaces a manual process of identifying fuel type and resulted in the downward correction of registered hybrids from 2013 to 2014.